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Angular momentum projection from nonaxial intrinsic states 

A WATT 
Department of Natural Philosophy, University of Glasgow, Glasgow W2, UK 

MS received 13 August 1971, in revised form 9 December 1971 

Abstract. An exact method of angular momentum projection from nonaxial intrinsic 
states is described. It is shown that the symmetries usually imposed on Hartree-Fock 
solutions lead to important simplifications in angular momentum projection. 

1. Introduction 

Angular momentum projection from Hartree-Fock (HF) intrinsic states has become an 
established technique in the study of nuclear structure. The HF method has long been 
used to construct intrinsic states giving general information about the nucleus (Ripka 
1968 and Kelson 1963), but it is only comparatively recently that manageable projection 
techniques have become available to allow extraction of more detailed information 
about particular states of the nucleus. (MacDonald 1970 and Raynal 1970.) Angular 
momentum projection is indeed a vital link between HF calculation and comparison 
with experiment. 

The Hartree-Fock method and angular momentum projection can be combined 
in essentially three ways called projection after variation, the mixing method and 
projection before variation. In projection after variation the HF solution of lowest 
energy is chosen as an intrinsic state and generates on projection a set of states which 
are usually taken to represent the ground state band of the nucleus. This approach 
has been extensively used to calculate energy levels and electromagnetic transition 
rates (Bassichis et a1 1965, Gunye and Warke 1967a, 1967b). 

Hartree-Fock calculations usually yield several solutions with low energy. On 
projection these give a number of states with the same angular momentum which can 
be used as a basis in which to diagonalize the Hamiltonian (Tewari and Grillot 1969. 
Do Dang 1970, Glen and MacDonald 1971 and Watt 1971a). Alternatively one can 
generate different intrinsic states by particle-hole excitations from HF solutions (Tewari 
1969 and Friedman 1970). 

The projection before variation method does not make direct use of HF solutions. 
Instead it is assumed that a single intrinsic state can on projection yield the J state of 
lowest energy in the nuclear spectrum, and the parameters of this intrinsic state are 
found by minimizing the energy of the projected wavefunction. This method has been 
used in the 2sld shell (Dreizler et a1 1968 and Watt 1970) and very interesting results 
have been obtained in the l p  shell where more complete calculations have been possible 
(Bouten et a1 1967). The HF solution with lowest energy always seems to be an excellent 
first approximation in a projection before variation calculation. 
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Angular momentum projection 585 

The purpose of this paper is to show that the projection methods introduced by 
Unna (1963) and Redlich (1958) can be adapted for use with an important class of 
HF solutions, namely those with ellipsoidal symmetry (Bar-Touv and Kelson 1965 and 
Ripka 1968). The advantage of Unna's method over others which have been proposed 
is that it is purely algebraic and therefore especially amenable to further development 
in particular instances where the intrinsic states possess symmetries. 

2. Angular momentum projection in general 

Some general features of the problem of projecting states of definite angular momentum 
from intrinsic wavefunctions will be considered in this section. Consider a set of intrinsic 
wavefunctions [41), . . . . Any such wavefunction I&) can be written as a linear 
combination of normalized states IuKJK) with definite angular momentum J and 
component K along the intrinsic z axis 

A projection operator PLK may be used to separate the terms on the right side of 
equation (l), giving 

where M is the z component of angular momentum in the space-fixed system of axes. 
The identities (Lamme and Boeker 1969 and MacDonald 1970) 

( P L K K ) t  = p i M  

and 

P i ' M ' P L K  = B M M ' P i ' K  

allow the following expression to be derived for the overlap N ~ , , ( u u )  of two wavefunctions 
of the type appearing in equation ( 2 )  : 

The Hamiltonian H is invariant under rotations and so commutes with the operators 
P L K .  Hence 

I(n)JM> = G x f K l 4 " )  
uK 

are orthonormalized eigenvectors of the Hamiltonian with energies E; in the space 
spanned by the states of definite J projected from @l), . . if 

( H J  - E ; N J ) e J  = 0. (5) 
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Here H J  and N J  are matrices whose elements are H&,(uu) and N ~ . , ( u u ) ,  rows and 
columns being labelled by the indices uK’ and uK respectively. The coefficients C$ form 
the vector CJ. 

The order of the matrices N J  and H J  is not large in practice. Hence the solution of 
the eigenvalue problem (5) is trivial compared with the calculation of the matrices 
themselves. In practice one normally obtains only a very small fraction of all the possible 
states of a nucleus with given angular momentum, and it seems very unlikely that these 
few states would ever be linearly dependent. Nevertheless, this has occurred in 28Si 
(Watt 1971b). 

3. Angular momentum projection from Slater determinants 

The methods of the previous section may be used with any set of intrinsic wavefunctions 
14’). . . . Here the angular momentum projection necessary to initiate such a 

calculation is considered in detail under the assumption that the intrinsic wavefunctions 
are Slater determinants. The single particle orbitals from which the determinant 14,) 
is generated will be denoted by lup)lt,,) in which the second ket describes the isospin 
only and the first may be expanded in terms of single particle states Inljm) in some 
suitable central potential 

I U P >  = 1 aXjmIn(im>, 
nljm 

Let us consider the calculation of the quantities N;,,(uu) and H ~ , , ( u u ) .  The indices 
uu are an inessential encumbrance at  this stage and will be omitted whenever possible. 
The overlap N i p ,  is defined in equation (3) and is 

Here R(R) is the operator which rotates a wavefunction through Euler angles R and 
9LK(Q)  is a matrix element of R(R). Hence all the overlaps N&, may be obtained from 
the numerical determinant 

D‘12’(Q) = ( $ u l ~ ( Q ) l 4 L J  

D;y(Q)  = 6 r u p 7 v q  1 a;pJ;a;fjm .9’,m.(n). 

whose pqth element is a single particle matrix element of the rotation operator 

nljmm’ 

The presence of the isospin delta function implies that D(12)  may be written as a product 
of two determinants, Dtl)  whose elements come only from proton orbitals and LY2’ 
whose elements come only from neutron orbitals. 

The elements of D(’) and D(’) are linear combinations of rotation matrix elements 
which depend on the Euler angles 0. For convenience, such a sum will be referred to as 
a 9 number. 

The 9 numbers have certain properties which are crucial to the projection method. 
Methods of combining 9 numbers which are functions of the same Euler angles will 
be discussed since other cases do not appear in the applications considered here. First, 
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it is clear that two 9 numbers can be added or subtracted to give a new 9 number. 
Secondly, the relation 

is well known in angular momentum algebra and is proved in Edmonds (1957) whose 
notation for Clebsch-Gordan coefficients ( j l m l  jzmzl j , j , J M )  and other quantities con- 
nected with angular momentum will be used throughout. Equation (7) allows us to 
define multiplication of 9 numbers, for if 

9, = 1 A L M , 9 L M r  
J M M '  

and 

it follows that 

The 9 numbers form a ring under the operations of addition and multiplication. 
The determinant 0"') can be evaluated by performing multiplications and additions 

of 9 numbers and is therefore itself a 9 number. Indeed the orthogonality of the rotation 
matrix elements (Edmonds 1957) and equation (6) imply that 

Hence the overlaps may be obtained by expressing D'") as a 9 number by successive 
multiplications and additions, and the coefficient of 9irK in the resulting expansion is 
N i t K .  This method has several advantages over other methods. It is exact as it avoids 
numerical integration. It works for Slater determinants without special symmetries, 
and gives the complete set of NitK in one operation. Alternatively, if some values of J 
are not of interest, as frequently occurs in practice, the multiplications (9) can often at 
quite an early stage be truncated by omitting terms which will give no contribution. 

The determinants D ( l )  and D") may be computed in a variety of ways, but it has 
been found that the Laplace expansion of a determinant (Ferrar 1957) can be used very 
effectively. 

From equation (4) 

If the quantity <4,IHR(Q)[+,) is expressed as a $3 number the arguments leading to 
equation (10) give 

(~ , IHR(Q) I~U> = 1 H & K 9 i , K .  (11) 
J K ' K  

The hardest part of any projection calculation is to procure expansion (1 1). 
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The Hamiltonian H will be assumed to contain only one-body and two-body 
operators ti and qj ,  but since for a nucleus of A particles 

A 

i < j  
H =  1 t i+C  v j =  

i = l  i < j  

i t  is unnecessary to consider single particle operators at this stage. Standard manipula- 
tion of determinants then gives 

(4uIHR(Q)I$,> = Mb~,2s)Hpqrs(- l )p~q+ri '  
P < 4  
r C s  

where 

Hpqrs = (wUp ; W L , I H R ( Q ) I C ' ~ T , ,  ;  ST,,) 

and Mkif,' is the minor of D(12) obtained by omitting rows p q  and columns rs. The 
multiplication of Mgqf,' by Hpqrs  is of course a 3 number multiplication. The term 
Hpqrs is antisymmetrized and can be written explicitly as a 9 number by coupling states 
p q  and rs to total angular momentum J and isospin T. Setting up = n p l p j p  the result is 

H p q r s  = a,"~~,a~~~,a~:m,a~:m~G(x,a,JTIH,,IarasJT)) 
=PmPaqmq 
i,mrarms 

J M M ' T  W T  

( ~ T , p 3 T u q / 3 3 T M T ) ( t 7 , r 3 T , s l  T M T )  

The symbols ( H p 4 r s ) J T M M ,  are defined through equations (12) and (1 3). The quantities 
(r,a,JTIH, 21tlrtlsJT) are matrix elements between antisymmetrized and normalized 
two particle states which require the normalization factor G. 

A moment's thought shows that a vast amount of numerical work would be required 
to carry out the procedure outlined above. It is therefore important to look for ways 
of simplifying the calculation and in the next section it will be shown that any symmetries 
in the intrinsic states can be used to advantage. 

4. Consequences of symmetries in the intrinsic states 

It will now be assumed that the intrinsic states have the ellipsoidal and time reversal 
symmetries familiar from Hartree-Fock theory (Ripka 1968). Nuclei with an even 
number of protons and an equal number of neutrons will be considered, and the number 
of active protons will be denoted by N .  The essential simplifications in the intrinsic 
states implied by these assumptions are that neutrons and protons occupy the same 
orbitals if the nuclear force is charge independent, and that for each occupied orbital 
Ip) ,  the time reversed orbital le) is also occupied. For a Hartree-Fock solution in a 
single major shell calculation (Ripka 1968) this implies that the expansion 

IP> = C U i t j m I U Q m )  
n l j m  
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is over only even (or odd) values of m - 9, and the coefficients aiLjm are real. Then 

lfi) = aiLjm(- 1)j-“InU-m) 
n l j m  

to a phase factor which may be omitted. It follows that 

If) = -b). (14) 
The symmetries also imply certain relations among the overlaps NiK,  and energies 

H i K r .  The only allowed values of K ,  K’ are 0, f 2, k4, . . . , f ( J  - 1) or k J ,  and 

with similar relations among the H i K , .  In particular K = 0 or K‘ = 0 do not occur 
for odd J, and hence no J = 1 state can be projected from these intrinsic states. 

For definiteness the single particle orbitals Ip) will be labelled by integral values 
of p = 1,2, .  . . , N and the label of the time reversed orbital lfi) will be defined to be 

f i =  N + l - p .  (15) 

Since neutrons occupy the same orbits as protons, the two determinants D(l) and D(’) 
introduced in 6 3 are equal element by element and the superscripts may be omitted. 

The matrix element (&IHR(Q)lrj,) now becomes 

(4,IHR(Q)($,)  = 2 0  2 ( -  l ) p + q + r + s  MpqrsHSis 
P < Q  
r < s  

Here Mpqrs is the minor of order N - 2  obtained by omitting rows p q  and columns rs 
of D, and hence DM,,,, is a minor of the determinant D‘”); also M,, is a minor of order 
N - 1 of D. The first term arises from the interactions between two protons (or two 
neutrons, giving the factor 2) while the second arises from interactions between one 
proton and one neutron. The superfix 0 or 1 on Hpqrs labels the lMTl value of the two- 
particle states Ipq) and Irs). The labels p ,  r refer to proton states in both terms while 
labels q, s refer to proton states in the first term but to neutron states in the second. The 
isospin factors in equation (12) therefore reduce to 

Hence 
H;P!s = iHf!rs + 1 (Hpqrs)JT = O M M ’ 9 M M ’  J 

JMM’ 

so that the T = 1 term need not be computed separately for both MT = 0 and MT = 1. 
All multiplications in equation (16) are of course 9 number multiplications. 

The evaluation of equation (16) is by far the most lengthy part of any projection 
calculation. Consider for example the nucleus 24Mg with eight active particles in the 
2sld shell. There are 36 terms in the first sum on the right side of equation (16). Each 
product MpqrsHrJrs requires the calculation of the two factors, each of which contains 
up to 55 nonzero elements with different JMM’. Each of the 55 x 55 products requires 
several Clebsch-Gordan coefficients according to equation (7). Finally, the result must 
be multiplied by D which contains 104 nonzero terms. The second sum in equation (16) 
is even more formidable. Each matrix element and each minor has up to 91 nonzero 
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coefficients of rotation matrix elements and there are 256 terms in the sum. Projection 
before variation calculations of the type carried out to date would be out of the question 
in 24Mg if these numbers could not be drastically reduced, and it is in this connection 
that the symmetries play a most crucial role. 

Before proceeding further, it is necessary to derive some properties of the 9 numbers. 
Operators T,, T2 and T, may be defined to operate on a 9 number, such as Y ,  in 
equation (8), as follows : 

Products of these operators may now be defined. In all cases occurring in angular 
momentum projection, the values of J in the Q numbers are either all integers or all 
half integers. Hence the operators T:  and T:  applied to 9, give either +8, or --PI 
depending on the values of J ,  and so are of no practical value. Also T &  = 1, Tl and T, 
commute and TITM = TMT2. The only useful products are therefore TITz, TIIT$. 
T2 TM and Tl T2 T,. Apart from a possible factor - 1, any product may be reduced to 
an operator in the set 

S = {l .  Tl)@(l,  T2}@(1, TMj 

where 0 indicates a direct product. 
The physical significance of these operators may be understood by considering their 

effect on an element of D such as (uplR(Q)luq). The operators Tl and T2 replace (up1 
by (up1 and ( v q )  by lug)  respectively, while T, exchanges the roles of lup) and / v q ) .  
That is 

Tl (upIR(Q)lvq) = (UplW)lvq)@@) 

T,(UPlR(Q)lW) = (uPIR(Q)luw(4  

T,(UPl NQ)Iw) = ( UqlR(wP). 

and 

Relation (14) gives the factors 8, defined by 

d(p) = + 1 p < i N  
8(p) = - 1 p > i N .  

The expressions on the right sides of these equations may also be elements of D. The 
operators TI and T2 certainly relate elements of D, while T, will relate elements of D 
if initial and final states are the same, that is, if U = U. Clearly products of the operators 
will also relate elements of D. Thus the operators in the set 

T = (1, Tl)@{L ~ Z > @ ( 1 d U ” ~ M )  

allow all the elements of D to be generated from a few. This is a rather trivial result but 
it illustrates the use of these operators. 
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The real usefulness of the operators in S comes about because they are distributive 
with respect to 9 number addition and multiplication. The property is obvious for 
addition and will now be proved for multiplication. 

Theorem 1. The operators in S = (1 ,  Tl)@(l, Tz}@{l, TM} are distributive with 
respect to 9 number multiplication, that is, if F E S ,  

F(9,9z.. . gn) = ( F 9 1 ) ( F 9 z )  * . . (F9J. 

The theorem will first be proved for a product of two 9 numbers, g1 and gZ of equation 
(8). Consider the operator T M .  From definition (19) and equations (7) and (9), 

This proves the assertion for T M .  
Now consider operator Tl . By definition (17) 

x ( J 1  -M1JZ-Mz(J1JZJ-M) 

x (J lM~JzM~~JlJzJM’)9 !  M M , .  

In this expression, M = M ,  + Mz because of the Clebsch-Gordan coefficient, and 
J1 + Jz + J must be an integer. Since 

( -  1)J i  + J z - M  (J1 -MIJz -M,IJ,J,J-M) = (- l ) z ( J l + J 2 + J ) + J - M  

x (J 1M 1 JzMz  IJW 
= (- i ) J - M ( ~ l ~ l ~ z ~ z l ~ ~ )  

the right side of the above expression equals Tl(919z), which proves the result for Tl . 
The result for Tz can be derived in a similar way. 

Let T ,  Fz E S’ = (1, Tl, T,, TM}. Then 

T%@l%) = 5 [ ( % 9 1 ) ( % 9 Z ) l  = (%%%)(T%%). 
But any operator 9- E S can be expressed as a product of operators in S’ and hence the 
theorem is true for products of two 9 numbers. Since 9 number multiplication is 
associative 

9 - ( 9 1 9 2  . . .9J = F[@1 . . . 9n-1)9n] 

= [F (~ I  . . * a n  - 111 ( 9 - 9 n )  

and the theorem follows by induction. 
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Since the operators in Tact on elements of the determinant D to give other elements, 
it follows from the above theorem that these operators when applied to a minor of D 
will generate other minors of D. When applied to the matrix elements ,Hpqrs ,  these 
operators also generate other matrix elements as can be seen from equation (12) .  Hence 
these operators can be used to reduce the number of minors and of matrix elements 
which need to be calculated explicitly. Another relationship useful in calculating the 
quantities Hpqrs is 

(20) ( H p q s r I J T M M '  = ( - l ) T ( H p q r s ) J T M M ,  

which is not hard to prove. 
It is now possible to simplify equation (16). The expression 

will be considered first. It is convenient to use the notation of set theory (Kahan 1965) 
to keep track of the ranges of the variables pqrs over which the summation must be 
performed. In equation (21) ,  pqrs belongs to the set S, given by 

SI = { p q r s : l  Q p  < N , p  < q Q N ; 1  Q r  < N , r  < s  Q N ) .  

Consider the effect of operator T, on a typical term in equation (21). It will change 
labels p q  into Pij. But only p < q belong to S ,  and hence i j  < @by definition (15) and so 

(pqrs) E S ,  * (ijprs) E S ,  

since 

1 Q p < N , p  < q Q N * 1 < ij < N , i j  < p Q N .  

From equations (17) and (20) 

T, HgqiS = O(p)O(q)H$Ls = - O(p)O(q)H&. 

It is easy to show from the theory of determinants that 

T I M p q r s  = - N P ) ' 3 q ) M , f i r s  

and hence 

T,[(- f ) P + q + r + s  MpqrsHg;rs] = ( - 1)4 + p + + sMapr,H&Ls . 

This result shows that the operator TI may be applied to a complete term in expression 
(21)  to give another complete term in the expansion. If p = i j  (and hence ff = q) ,  the 
operator TI leaves the term unaltered. Expression (21) may therefore be written 

A = (1 + T,) ( -  l ) p + q + r f s M  p q r s H g / r s ( 1 +  6d)- 
pqrsoS2 

where S2 c SI and has still to be determined. The members pqrs of S2 must satisfy the 
conditions of SI and obey the auxiliary conditions that either p" = q or 

(pqrs) E S 2  3 (@s) E' S , .  

There are in all 2N(N-2)14  ways of choosing the set S2 .  One possibility is as follows. Pairs 
of indices (pq) may be ordered by the conditions (pq) < (p'q')  if p < p' or p = p' and 
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q < q’, and (pq) = ($4’) if p = p’, q = q’. Then S2 contains all sets (pqrs) E S1 which 
satisfy (pq) < (48. This implies that 

S2 = {pqrs : l  < p < i N , p  < q < p”; 1 < r < N , r  < s < N } .  

If operator T2 is used, the summation reduces to 

A = ( 1  + T2)(1+ TI) 1 ( -  l ) p + q + r + s  MpqrsHy/rs(l +6,)- ‘ ( 1  + hri)- ’ 
pqrseSn 

where 

S , = ( p q r s : l  < p < + N , p < q < P ; l  < r < i N , r < s < 7 } .  

If initial and final wavefunctions are the same, operator TM may be used and 

where 

and 

S, = {pqrs:(pqrs) E S ,  and ( p q )  < (rs)} .  

The convention defined above is used to order the pairs (pq) and (rs). 
The total number of members of the various sets is important when deciding on the 

feasibility of an actual calculation. These numbers are presented in table 1 for N active 
protons along with representative numbers for the nuclei 24Mg and 28Si with re- 
spectively eight and twelve active particles in the 2sld shell. 

Table 1. Numbers of elements in the sets defined in the text 

Number 24Mg 

$ N 2 ( N -  1)2 36 
& N 3 ( N  - 1) 24 
&N4 16 
fsN2(N2+4) 10 
N4 256 
$N2(N2+4) 40 
& N 2 ( N 2 + 8 )  24 

28si 

225 
135 
81 
45 
1296 
180 
99 

The second term in equation (16) may be reduced in a similar way. We write 

B = 1 ( - l )P+q+r+s  MprMqsHjP,!s . 
pqrs 

Since neutrons and protons occupy the same orbitals 
H$is = H‘O) 

qpsr  

and hence 

MPrMq,HjP4!, = M qs M pr  H‘O’ q p s r *  
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The expressions on both right and left of this equation appear in summation (22)  which 
may therefore be written 

where 

S, = ( p q r s : l  < p Q q < N; 1 Q r < N, 1 Q s Q N , r  < s i fp  = qj .  

As above 

TlHb"!s = e(P)e(q)Hg?s = - e(P)e(q ,Hgs  
and 

pqrs E S, @rs E S, . 
Also 

T M p r  = -@(p)Mfir. 

Similar results hold for T2 and hence 

where 

If TM is also applicable, equation (22) becomes finally 

The number of members of sets S,, S ,  and S7 are given in table 1. 
It can be seen that in the limit of large N ,  the amount of work involved in calculating 

A and B is reduced by factors of eight and sixteen respectively. These reductions are 
especially important in the projection before variation type of calculation where the 
energy of the projected state is minimized numerically in a space of several variables, 
and hundreds of projections are therefore necessary. Results have been reported for 
the nucleus 24Mg (Watt 1971a) and calculations for "Si are feasible using these methods. 
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5. Conclusion 

It has been shown that angular momentum projection can be greatly simplified if the 
intrinsic states have the ellipsoidal and time reversal symmetries commonly assumed 
in Hartree-Fock calculations. The method which has been developed is exact and 
suffers neither from the formidable computational problems of direct numerical integra- 
tion nor from the inherent uncertainties of approximation methods. Since the approach 
is analytical, it should be possible to develop similar methods to cope with other sym- 
metries in the intrinsic states should the need arise. 
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